Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides.
نویسندگان
چکیده
We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achieve negative refraction of both phase and energy. Control of waveguide coupling yields a metamaterial consisting of a one-dimensional multilayer stack that exhibits an isotropic index of -1 at a free-space wavelength of 400 nm. The concepts developed here may inspire new low-loss metamaterial designs operating close to the metal plasma frequency.
منابع مشابه
Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries.
We present a theoretical analysis of planar plasmonic waveguides that support propagation of positive and negative index modes. Particular attention is given to the modes sustained by metal-insulator-metal (MIM), insulator-metal-insulator (IMI), and insulator-insulator-metal (IIM) geometries at visible and near-infrared frequencies. We find that all three plasmonic structures are characterized ...
متن کاملThree-dimensional nanotransmission lines at optical frequencies: A recipe for broadband negative-refraction optical metamaterials
We apply the optical nanocircuit concepts to design and analyze in detail a three-dimensional (3D) plasmonic nanotransmission line network that may act as a relatively broadband negative-refraction metamaterial at infrared and optical frequencies. After discussing the heuristic concepts in our theory, we show full-wave analytical results of the expected behavior of such materials, which show in...
متن کاملFlatland Photonics: Circumventing Diffraction with Planar Plasmonic Architectures
On subwavelength scales, photon-matter interactions are limited by diffraction. The diffraction limit restricts the size of optical devices and the resolution of conventional microscopes to wavelength-scale dimensions, severely hampering our ability to control and probe subwavelength-scale optical phenomena. Circumventing diffraction is now a principle focus of integrated nanophotonics. Surface...
متن کاملAdd-Drop and Channel-Drop Optical Filters Based on Photonic Crystal Ring Resonators
Here, we propose an add-drop and a channel drop filter based on two-dimensional photonic crystal all circular ring resonators. These structures are made of a square lattice of silicon rods with the refractive index n1=3.464 surrounded by air (with refractive index n2=1). The broadest photonic band gap occurs at the filling ratio of r/a = 0.17. Two linear defect W1 waveguides couple to the ring....
متن کاملDynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles
We present a detailed analytical theory for the plasmonic nanoring configuration first proposed by Alù et al. [Opt. Express 14, 1557 (2006)], which is shown to provide negative magnetic permeability and negative index of refraction at infrared and optical frequencies. We show analytically how the nanoring configuration may provide superior performance when compared to some other solutions for o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 105 22 شماره
صفحات -
تاریخ انتشار 2010